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Abstract

Distributed consensus is a fundamental primitive for con-
structing fault-tolerant, strongly-consistent distributed sys-
tems. Though many distributed consensus algorithms have
been proposed, just two dominate production systems: Paxos,
the traditional, famously subtle, algorithm; and Raft, a more
recent algorithm positioned as a more understandable alter-
native to Paxos.
In this paper, we consider the question of which algo-

rithm, Paxos or Raft, is the better solution to distributed con-
sensus? We analyse both to determine exactly how they dif-
fer by describing a simplified Paxos algorithm using Raft’s
terminology and pragmatic abstractions.
We find that both Paxos and Raft take a very similar ap-

proach to distributed consensus, differing only in their ap-
proach to leader election. Most notably, Raft only allows
servers with up-to-date logs to become leaders, whereas Paxos
allows any server to be leader provided it then updates its
log to ensure it is up-to-date. Raft’s approach is surprisingly
efficient given its simplicity as, unlike Paxos, it does not re-
quire log entries to be exchanged during leader election. We
surmise that much of the understandability of Raft comes
from the paper’s clear presentation rather than being fun-
damental to the underlying algorithm being presented.

1 Introduction

State machine replication [32] is widely used to compose a
set of unreliable hosts into a single reliable service that can
provide strong consistency guarantees including linearizabil-
ity [13]. As a result, programmers can treat a service imple-
mented using replicated state machines as a single system,
making it easy to reason about expected behaviour. State
machine replication requires that each statemachine receives
the same operations in the same order, which can be achieved
by distributed consensus.
The Paxos algorithm [16] is synonymouswith distributed

consensus. Despite its success, Paxos is famously difficult to
understand, making it hard to reason about, implement cor-
rectly, and safely optimise. This is evident in the numerous
attempts to explain the algorithm in simpler terms [4, 17, 22,
23, 25, 29, 35], and was the motivation behind Raft [28].

Raft’s authors’ claim that Raft is as efficient as Paxoswhilst
being more understandable and thus provides a better foun-
dation for building practical systems. Raft seeks to achieve
this in three distinct ways:
Presentation Firstly, the Raft paper introduces a new ab-

straction for describing leader-based consensus in the con-
text of state machine replication. This pragmatic presen-
tation has proven incredibly popular with engineers.

Simplicity Secondly, the Raft paper prioritises simplicity
over performance. For example, Raft decides log entries
in-order whereas Paxos typically allows out-of-order de-
cisions but requires an extra protocol for filling the log
gaps which can occur as a result.

Underlying algorithm Finally, the Raft algorithm takes a
novel approach to leader electionwhich alters how a leader
is elected and thus how safety is guaranteed.

Raft rapidly became popular [30] and production systems
today are divided between those which use Paxos [3, 5, 31,
33, 36, 38] and those which use Raft [2, 8–10, 15, 24, 34].
To answer the question of which, Paxos or Raft, is the

better solution to distributed consensus, we must first an-
swer the question of how exactly the two algorithms differ
in their approach to consensus? Not only will this help in
evaluating these algorithms, it may also allow Raft to ben-
efit from the decades of research optimising Paxos’ perfor-
mance [6, 12, 14, 18–20, 26, 27] and vice versa [1, 37].
However, answering this question is not a straightforward

matter. Paxos is often regarded not as a single algorithm but
as a family of algorithms for solving distributed consensus.
Paxos’ generality (or underspecification, depending on your
point of view) means that descriptions of the algorithm vary,
sometimes considerably, from paper to paper.
To overcome this problem, we present here a simplified

version of Paxos that results from surveying the various
published descriptions of Paxos. This algorithm, which we
refer to simply as Paxos, corresponds more closely to how
Paxos is used today than to how it was first described [16]. It
has been referred to elsewhere asmulti-decree Paxos, or just
MultiPaxos, to distinguish it from single-decree Paxos, which
decides a single value instead of a totally-ordered sequence
of values. We also describe our simplified algorithm using
the style and abstractions from the Raft paper, allowing a
fair comparison between the two different algorithms.
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We conclude that there is no significant difference in un-
derstandability between the algorithms, and that Raft’s leader
election is surprisingly efficient given its simplicity.

2 Background

This paper examines distributed consensus in the context
of state machine replication. State machine replication re-
quires that an application’s deterministic state machine is
replicated across n servers with each applying the same set
of operations in the same order. This is achieved using a
replication log, managed by a distributed consensus algo-
rithm, typically Paxos or Raft.
We assume that the system is non-Byzantine [21] but we

do not assume that the system is synchronous. Messages
may be arbitrarily delayed and participating servers may
operate at any speed, but we assume message exchange is
reliable and in-order (e.g., through use of TCP/IP). We do
not depend upon clock synchronisation for safety, though
we must for liveness [11]. We assume each of the n servers
has an unique id s where s ∈ {0..(n − 1)}. We assume that
operations are unique, easily achieved by adding a pair of
sequence number and server id to each operation.

3 Approach of Paxos & Raft

Many consensus algorithms, including Paxos and Raft, use
a leader-based approach to solve distributed consensus. At
a high-level, these algorithms operate as follows:
One of the n servers is designated the leader. All opera-

tions for the state machine are sent to the leader. The leader
appends the operation to their log and asks the other servers
to do the same. Once the leader has received acknowledge-
ments from a majority of servers that this has taken place,
it applies the operation to its state machine. This process
repeats until the leader fails. When the leader fails, another
server takes over as leader. This process of electing a new
leader involves at least a majority of servers, ensuring that
the new leader will not overwrite any previously applied
operations.
We now examine Paxos and Raft in more detail. Read-

ers may find it helpful to refer to the summaries of Paxos
and Raft provided in Appendices A & B. We focus here on
the core elements of Paxos and Raft and, due to space con-
straints, do not compare garbage collection, log compaction,
read operations or reconfiguration algorithms.

3.1 Basics

As shown in Figure 1, at any time a server can be in one of
three states:
Follower A passive state where it is responsible only for

replying to RPCs.
Candidate An active state where it is trying to become a

leader using the RequestVotes RPC.

Follower Candidate Leader

starts up/
recovers

times out,
starts election

times out,
new election

receives votes from
majority of servers

discovers new

term (or leader)

discovers new term

Figure 1. State transitions between the server states for
Paxos & Raft. The transitions in blue are specific to Raft.

Leader An active state where it is responsible for adding
operations to the replicated log using the AppendEntries
RPC.
Initially, servers are in the follower state. Each server con-

tinues as a follower until it believes that the leader has failed.
The follower then becomes a candidate and tries to be elected
leader using RequestVote RPCs. If successful, the candidate
becomes a leader. The new leader must regularly send Ap-
pendEntries RPCs as keepalives to prevent followers from
timing out and becoming candidates.
Each server stores a natural number, the term, which in-

creases monotonically over time. Initially, each server has
a current term of zero. The sending server’s (hereafter, the
sender) current term is included in each RPC.When a server
receives an RPC, it (hereafter, the server) first checks the in-
cluded term. If the sender’s term is greater than the server’s,
then the server will update its term before responding to the
RPC and, if the server was either a candidate or a leader, step
down to become a follower. If the sender’s term is equal to
that of the server, then the server will respond to the RPC as
usual. If the sender’s term is less than that of the server, then
the server will respond negatively to the sender, including
its term in the response. When the sender receives such a
response, it will step down to follower and update its term.

3.2 Normal operation

When a leader receives an operation, it appends it to the end
of its log with the current term. The pair of operation and
term are known as a log entry. The leader then sends Appen-
dEntries RPCs to all other servers with the new log entry.
Each server maintains a commit index to record which log
entries are safe to apply to its state machine, and responds
to the leader acknowledging successful receipt of the new
log entry. Once the leader receives positive responses from
a majority of servers, the leader updates its commit index
and applies the operation to its state machine. The leader
then includes the updated commit index in subsequent Ap-
pendEntries RPCs.
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(a) Initial state of logs before
electing a new leader.
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(b) s1 is leader in term 4 after a
vote from s2.
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(c) s2 is leader in term 5 after a
vote from s3.
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(d) s3 is leader in term 6 after a
vote from s1 or s2.

Figure 2. Logs of three servers running Paxos. Figure (a) shows the logs when a leader election was triggered. Figures (b—d)
show the logs after a leader has been elected but before it has sent its first AppendEntries RPC. The black line shows the
commit index and red text highlights the log changes.

A follower will only append a log entry (or set of log en-
tries) if its log prior to that entry (or entries) is identical
to the leader’s log. This ensures that log entries are added
in-order, preventing gaps in the log, and ensuring followers
apply the correct log entries to their state machines.

3.3 Handling leader failures

This process continues until the leader fails, requiring a new
leader to be established. Paxos and Raft take different ap-
proaches to this process so we describe each in turn.
Paxos. A follower will timeout after failing to receive a

recent AppendEntries RPC from the leader. It then becomes
a candidate and updates its term to the next term such that
t mod n = s where t is the next term, n is the number of
servers and s is the candidate’s server id. The candidate will
send RequestVote RPCs to the other servers. This RPC in-
cludes the candidate’s new term and commit index. When
a server receives the RequestVote RPC, it will respond posi-
tively provided the candidate’s term is greater than its own.
This response also includes any log entries that the server
has in its log subsequent to the candidate’s commit index.
Once the candidate has received positive RequestVote re-

sponses from a majority of servers, the candidate must en-
sure its log includes all committed entries before becoming
a leader. It does so as follows. For each index after the com-
mit index, the leader reviews the log entries it has received
alongside its own log. If the candidate has seen a log entry
for the index then it will update its own log with the entry
and the new term. If the leader has seen multiple log entries
for the same index then it will update its own log with the
entry from the greatest term and the new term. An example
of this is given in Figure 2. The candidate can now become
a leader and begin replicating its log to the other servers.
Raft. At least one of the followers will timeout after not

receiving a recent AppendEntries RPC for the leader. It will
become a candidate and increment its term. The candidate

will send RequestVote RPCs to the other servers. Each in-
cludes the candidate’s term as well as the candidate’s last
log term and index. When a server receives the RequestVote
request it will respond positively provided the candidate’s
term is greater than or equal to its own, it has not yet voted
for a candidate in this term, and the candidate’s log is at least
as up-to-date as its own. This last criterion can be checked
by ensuring that the candidate’s last log term is greater than
the server’s or, if they are the same, that the candidate’s last
index is greater than the server’s.
Once the candidate has received positive RequestVote re-

sponses from a majority of servers, the candidate can be-
come a leader and start replicating its log.However, for safety
Raft requires that the leader does not update its commit in-
dex until at least one log entry from the new term has been
committed.
As theremay bemultiple candidates in a given term, votes

may be split such that no candidate has a majority. In this
case, the candidate times out and starts a new election with
the next term.

3.4 Safety

Both algorithms guarantee the following property:

Theorem 3.1 (State Machine Safety). If a server has applied
a log entry at a given index to its state machine, no other server

will ever apply a different log entry for the same index.

There is at most one leader per term and a leader will not
overwrite its own log so we can prove this by proving the
following:

Theorem 3.2 (Leader Completeness). If an operation op is

committed at index i by a leader in term t then all leaders of

terms > t will also have operation op at index i .

Proof sketch for Paxos. Assume operation op is committed at
index i with term t . We will use proof by induction over the
terms greater than t .
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Base case: If there is a leader of term t +1, then it will have
the operation op at index i .

As any two majority quorums intersect and messages are
ordered by term, then at least one server with operation op
at index i andwith term t must have positively replied to the
RequestVote RPC from the leader of t + 1. This server can-
not have deleted or overwritten this operation as it cannot
have positively responded to an AppendEntries RPC from
any other leader since the leader of term t . The leader will
choose the operation op as it will not receive any log entries
with a term > t .

Inductive case: Assume that any leaders of terms t + 1 to
t + k have the operation op at index i . If there is a leader of

term t + k + 1 then it will also have operation op at index i .

As any two majority quorums intersect and messages are
ordered by term, then at least one server with operation op
at index i and with term t to t + k must have positively
replied to the RequestVote RPC from the leader of term t +

k+1. This is because the server cannot have deleted or over-
written this operation as it has not positively responded to
an AppendEntries RPC from any leader except those with
terms t to t + k . From our induction hypothesis, all these
leaders will also have operation op at index i and thus will
not have overwritten it. The leader may choose another op-
eration only if it receives a log entry with that different oper-
ation at index i and with a greater term. From our induction
hypothesis, all leaders of terms t to t +k will also have oper-
ation op at index i and thus will not write another operation
at index i . �

The proof for Raft uses the same induction but the details
differ due to Raft’s different approach to leader election.

4 Discussion

Raft and Paxos take different approaches to leader election,
summarised in Table 1. We compare two dimensions, under-
standability and efficiency, to determine which is best.

Understandability. Raft guarantees that if two logs con-
tain the same operation then it will have the same index and
term in both. In other words, each operation is assigned a
unique index and term pair. However, this is not the case in
Paxos, where an operation may be assigned a higher term
by a future leader, as demonstrated by operations B and C
in Figure 2b. In Paxos, a log entry before the commit index
may be overwritten. This is safe because the log entry will
only be overwritten by an entry with the same operation,
but it not as intuitive as Raft’s approach.
The flip side of this is that Paxos makes it safe to commit

a log entry if it is present on a majority of servers; but this
is not the case for Raft, which requires that a leader only
commits a log entry from a previous term if it is present
on the majority of servers and the leader has committed a
subsequent log entry from the current term.

In Paxos, the log entries replicated by the leader are ei-
ther from the current term or they are already committed.
We can see this in Figure 2, where all log entries after the
commit index on the leader have the current term. This is
not the case in Raft where a leader may be replicating un-
committed entries from previous terms.
Overall, we feel that Raft’s approach is slightly more un-

derstandable than Paxos’ but not significantly so.

Efficiency. In Paxos, if multiple servers become candidates
simultaneously, the candidate with the higher termwill win
the election. In Raft, if multiple servers become candidates
simultaneously, they may split the votes as they will have
the same term, and so neither will win the election. Raft mit-
igates this by having followers wait an additional period,
drawn from a uniform random distribution, after the elec-
tion timeout. We thus expect that Raft will be both slower
and have higher variance in the time taken to elect a leader.
However, Raft’s leader election phase is more lightweight

than Paxos’. Raft only allows a candidate with an up-to-date
log to become a leader and thus need not send log entries
during leader election. This is not true of Paxos, where ev-
ery positive RequestVote response includes the follower’s
log entries after the candidate’s commit index. There are
various options to reduce the number of log entries sent but
ultimately, it will always be necessary for some log entries
to be sent if the leader’s log is not already up to date.
It is not just with the RequestVote responses that Paxos

sends more log entries than Raft. In both algorithms, once
a candidate becomes a leader it will copy its log to all other
servers. In Paxos, a log entry may have been given a new
term by the leader and thus the leader may send another
copy of the log entry to a server which already has a copy.
This is not the casewith Raft, where each log entry keeps the
same term throughout its time in the log. Again, there are
various options for mitigating this issue in Paxos but they
are beyond the scope of our simplified Paxos algorithm.
Overall, compared to Paxos, Raft’s approach to leader elec-

tion is surprisingly efficient for such a simple approach.

5 Relation to classical Paxos

Readers who are familiar with Paxos may feel that our de-
scription of Paxos differs from those previously published,
and so we now outline how our Paxos algorithm relates to
those found elsewhere in the literature.

Roles Some descriptions of Paxos divide the responsibility
of Paxos into three roles: proposer, acceptor and learner [17]
or leader, acceptor and replica [35]. Our presentation uses
just one role, server, which incorporates all roles. This pre-
sentation using a single role has also used the name replica [7],

Terminology Terms are also referred to as views, ballot
numbers [35], proposal numbers [17], round numbers, se-
quence numbers [7] or epochs. Our leader is also referred to

4



Paxos Raft

How does it ensure

that each term has at
most one leader?

A server s can only be a candidate in a term t if
t mod n = s . There will only be one candidate
per term so only one leader per term.

A follower can become a candidate in any
term. Each follower will only vote for one can-
didate per term, so only one candidate can get
a majority of votes and become the leader.

How does it ensure
that a new leader’s log

contains all commit-

ted log entries?

Each RequestVote reply includes the fol-
lower’s log entries. Once a candidate has re-
ceived RequestVote responses from amajority
of followers, it adds the entries with the high-
est term to its log.

A vote is granted only if the candidate’s log is
at least as up-to-date as the followers’. This en-
sures that a candidate only becomes a leader
if its log is at least as up-to-date as a majority
of followers.

How does it ensure

that leaders safely

commit log entries
from previous terms?

Log entries from previous terms are added to
the leader’s log with the leader’s term. The
leader then replicates the log entries as if they
were from the leader’s term.

The leader replicates the log entries to the
other servers without changing the term. The
leader cannot consider these entries commit-
ted until it has replicated a subsequent log en-
try from its own term.

Table 1. Summary of the differences between Paxos and Raft

as a master [7], primary, coordinator or distinguished pro-
poser [17]. Typically, the period during which a server is a
candidate is known as phase-1 and the period during which
a server is a leader is known as phase-2. The RequestVote
RPCs are often referred to as phase1a and phase1bmessages [35],
prepare request and response [17] or prepare and promise
messages. The AppendEntries RPCs are often referred to as
phase2a and phase2b messages [35], accept request and re-
sponse [17] or propose and accept messages.

Terms Paxos requires only that terms are totally ordered
and that each server is allocated a disjoint set of terms (for
safety) and that each server can use a term greater than any
other term (for liveness). Whilst some descriptions of Paxos
use round-robin natural numbers like us [7], others use lexi-
cographically ordered pairs, consisting of an integer and the
server ID, where each server only uses terms containing its
own ID [35].

Ordering Our log entries are replicated and decided in-
order. This is not necessary but it does avoid the complex-
ities of filling log gaps [17]. Similarly, some descriptions of
Paxos bound the number of concurrent decisions, often nec-
essary for reconfiguration [17, 35].

6 Summary

The Raft algorithm was proposed to address the longstand-
ing issues with understandability of thewidely studied Paxos
algorithm.
In this paper, we have demonstrated that much of the un-

derstandability of Raft comes from its pragmatic abstraction
and excellent presentation. By describing a simplified Paxos
algorithm using the same approach as Raft, we find that the
two algorithms differ only in their approach to leader elec-
tion. Specifically:

(i) Paxos divides terms between servers, whereas Raft al-
lows a follower to become a candidate in any term but
followers will vote for only one candidate per term.

(ii) Paxos followers will vote for any candidate, whereas Raft
followers will only vote for a candidate if the candidate’s
log is at-least-as up-to-date.

(iii) If a leader has uncommitted log entries from a previous
term, Paxoswill replicate them in the current termwhereas
Raft will replicate them in their original term.
The Raft paper claims that Raft is significantly more un-

derstandable than Paxos, and as efficient. On the contrary,
we find that the two algorithms are not significantly dif-
ferent in understandability but Raft’s leader election is sur-
prisingly lightweight when compared to Paxos’. Both algo-
rithms we have presented are naïve by design and could cer-
tainly be optimised to improve performance, though often
at the cost of increased complexity.
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A Paxos Algorithm

This summarises our simplified, Raft-style Paxos algorithm.
The text in red is unique to Paxos.

State

Persistent state on all servers: (Updated on stable storage
before responding to RPCs)
currentTerm latest term server has seen (initialized to 0 on

first boot, increases monotonically)
log[ ] log entries; each entry contains command for state

machine, and term when entry was received by leader
(first index is 1)

Volatile state on all servers:
commitIndex index of highest log entry known to be com-

mitted (initialized to 0, increases monotonically)
lastApplied index of highest log entry applied to state ma-

chine (initialized to 0, increases monotonically)
Volatile state on candidates: (Reinitialized after election)
entries[] Log entries received with votes
Volatile state on leaders: (Reinitialized after election)
nextIndex[ ] for each server, index of the next log entry to

send to that server (initialized to leader commit index + 1)
matchIndex[ ] for each server, index of highest log en-

try known to be replicated on server (initialized to 0, in-
creases monotonically)

AppendEntries RPC

Invoked by leader to replicate log entries; also used as heart-
beat
Arguments:

term leader’s term
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[ ] log entries to store (empty for heartbeat; may

send more than one for efficiency)
leaderCommit leader’s commitIndex
Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching pre-

vLogIndex and prevLogTerm
Receiver implementation:

1. Reply false if term < currentTerm
2. Reply false if log doesn’t contain an entry at prevLogIndex

whose term matches prevLogTerm
3. If an existing entry conflicts with a new one (same index

but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log
5. If leaderCommit > commitIndex: set commitIndex =

min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes
Arguments:

term candidate’s term
leaderCommit candidate’s commit index
Results:
term currentTerm, for candidate to update itself
voteGranted true indicates candidate received vote
entries[] follower’s log entries after leaderCommit
Receiver implementation:

1. Reply false if term < currentTerm
2. Grant vote and send any log entries after leaderCommit

Rules for Servers

All Servers:

• If commitIndex > lastApplied: increment lastApplied and
apply log[lastApplied] to state machine

• If RPC request or response contains termT > currentTerm:
set currentTerm = T and convert to follower

Followers:

• Respond to RPCs from candidates and leaders
• If election timeout elapses without receiving AppendEn-
tries RPC from current leader or granting vote to candi-
date: convert to candidate

Candidates:

• On conversion to candidate, start election: increase cur-
rentTerm to next t such that t mod n = s , copy any log en-
tries after commitIndex to entries[], and send RequestVote
RPCs to all other servers

• Add any log entries received from RequestVote responses
to entries[]

• If votes received from majority of servers: update log
by adding entries[] with currentTerm (using value with
greatest term if there are multiple entries with same in-
dex) and become leader

Leaders:

• Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts

• If command received from client: append entry to local
log, respond after entry applied to state machine

• If last log index ≥ nextIndex for a follower: send Appen-
dEntries RPC with log entries starting at nextIndex
– If successful: update nextIndex and matchIndex for fol-
lower

– If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry

• If there exists an N such that N > commitIndex and a ma-
jority of matchIndex[i] ≥ N: set commitIndex = N
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B Raft Algorithm

This is a reproduction of Figure 2 from the Raft paper [28].
The text in red is unique to Raft.

State

Persistent state on all servers: (Updated on stable storage
before responding to RPCs)
currentTerm latest term server has seen (initialized to 0 on

first boot, increases monotonically)
votedFor candidateId that received vote in current term (or

null if none)
log[ ] log entries; each entry contains command for state

machine, and term when entry was received by leader
(first index is 1)

Volatile state on all servers:

commitIndex index of highest log entry known to be com-
mitted (initialized to 0, increases monotonically)

lastApplied index of highest log entry applied to state ma-
chine (initialized to 0, increases monotonically)

Volatile state on leaders: (Reinitialized after election)
nextIndex[ ] for each server, index of the next log entry to

send to that server (initialized to leader last log index + 1)
matchIndex[ ] for each server, index of highest log en-

try known to be replicated on server (initialized to 0, in-
creases monotonically)

AppendEntries RPC

Invoked by leader to replicate log entries; also used as heart-
beat
Arguments:

term leader’s term
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[ ] log entries to store (empty for heartbeat; may

send more than one for efficiency)
leaderCommit leader’s commitIndex
Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching pre-

vLogIndex and prevLogTerm
Receiver implementation:

1. Reply false if term < currentTerm
2. Reply false if log doesn’t contain an entry at prevLogIndex

whose term matches prevLogTerm
3. If an existing entry conflicts with a new one (same index

but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log
5. If leaderCommit > commitIndex: set commitIndex =

min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes
Arguments:

term candidate’s term
candidateId candidate requesting vote
lastLogIndex index of candidate’s last log entry
lastLogTerm term of candidate’s last log entry
Results:
term currentTerm, for candidate to update itself
voteGranted true indicates candidate received vote
Receiver implementation:

1. Reply false if term < currentTerm
2. If votedFor is null or candidateId, and candidate’s log is at

least as up-to-date as receiver’s log: grant vote

Rules for Servers

All Servers:

• If commitIndex > lastApplied: increment lastApplied, ap-
ply log[lastApplied] to state machine

• If RPC request or response contains termT > currentTerm:
set currentTerm = T and convert to follower

Followers:
• Respond to RPCs from candidates and leaders
• If election timeout elapses without receiving AppendEn-
tries RPC from current leader or granting vote to candi-
date: convert to candidate

Candidates:
• On conversion to candidate, start election: increment cur-
rentTerm, vote for self, reset election timer and send Re-
questVote RPCs to all other servers

• If votes received from majority of servers: become leader
• If AppendEntries RPC received from new leader: convert
to follower

• If election timeout elapses: start new election
Leaders:
• Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts

• If command received from client: append entry to local
log, respond after entry applied to state machine

• If last log index ≥ nextIndex for a follower: send Appen-
dEntries RPC with log entries starting at nextIndex
– If successful: update nextIndex and matchIndex for fol-
lower

– If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry

• If there exists an N such that N > commitIndex and a ma-
jority of matchIndex[i] ≥ N, and log[N].term == current-
Term: set commitIndex = N
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